In general, ValueN corresponds to the value before the shock for N=1 and after the shock for N=2 for forward and reverse shocks. The following apply primarily to forward shocks; reverse shocks are handled in a similar manner.
For forward shocks:
DeltaV = AMIN1( 60., 52. / SQRT( AMIN1(AvgShockNp1, AvgShockNp2) ) )
DeltaV = AMAX1( 19., DeltaV )
Term_Vsw = ( AvgShockVsw2 - AvgShockVsw1 ) / DeltaV
NpRatio = AvgShockNp2 / AvgShockNp1
Term_NV = NpRatio * AvgShockVsw2 / AvgShockVsw1
Term_Mach = ShockMach1 / ShockMach2
Term_Vth = AvgShockVth2 / AvgShockVth1
An event is a candidate for a forward shock if is passes the 10-1-10 requirements
and passes the 2-1-2 requirements (rejected if it fails any of these)
The Quality of a shock is determined from the above terms as follows:
for forward shocks:
ShockQuality = Term_Vsw * Term_NV/1.19 * Term_Mach*1.04
Term1 = ( 10. * (AvgShockVsw2 - AvgShockVsw1) / AvgShockVsw1 )**2
Term2 = ( AvgShockNp2 / AvgShockNp1 / 1.8 )**3
Quality = ( ShockQuality - 1.0 ) * ( Term1 + Term2 )
The ratio Vsw / StdVsw uses the following definitions of the standard deviation for forward and reverse shocks:
Vsw1StdDev = SQRT( 4. + AvgVsw1Sqr - AvgShockVsw1(1) * AvgShockVsw1(1) )
Vsw2StdDev = SQRT( 4. + AvgVsw2Sqr - AvgShockVsw2(1) * AvgShockVsw2(1) )
VswStdDev = SQRT(Vsw1StdDev*Vsw1StdDev + Vsw2StdDev*Vsw2StdDev)
The ratio Np / StdNp uses the following definitions of the standard deviation for forward and reverse shocks:
Np1StdDev = SQRT( 0.25 + AvgNp1Sqr - AvgShockNp1(1) * AvgShockNp1(1) )
Np2StdDev = SQRT( 0.25 + AvgNp2Sqr - AvgShockNp2(1) * AvgShockNp2(1) )
NpStdDev = SQRT(Np1StdDev*Np1StdDev + Np2StdDev*Np2StdDev)
details_2.html last modified on 11/2/11 at 5:29 PM by sel