University of Maryland
Atlantic Building, Room 2400 4:30 PM Monday, November 12, 2012
Coffee, Tea & Snacks 4:15-4:30 PM

Amaal A. Mohamed
Department of Physics, The Catholic University of America, Washington, DC., 20064, USA

The Interaction between Coronal Mass Ejections (CMEs) and Coronal Holes (CHs) during the Solar Cycle 23 and its Geomagnetic Consequences

The interactions between the two large scale phenomena, coronal holes (CHs) and coronal mass ejections (CMEs) may be considered as one of the most important relations that having a direct impact not only on space weather but also on the relevant plasma physics. Many observations have shown that throughout their propagation from the Sun to interplanetary space, CMEs interact with the heliospheric structures (e.g., other CMEs, Corotating interaction regions (CIRs), helmet streamers, and CHs). Such interactions could enhance the southward magnetic field component, which has important implications for geomagnetic storm generation. These interactions imply also a significant energy and momentum transfer between the interacting systems where magnetic reconnection is taking place. When CHs deflect CMEs away from or towards the Sun-Earth line, the geomagnetic response of the CME is highly affected. Gopalswamy et al. [2009] have addressed the deflection of CMEs due to the existence of CHs that are in close proximity to the eruption regions. They have shown that CHs can act as magnetic barriers that constrain CMEs propagation and can significantly affect their trajectories. Here, we study the interaction between coronal holes (CHs) and coronal mass ejections (CMEs) using a resultant force exerted by all coronal holes present on the disk and is defined as the coronal hole influence parameter (CHIP). The CHIP magnitude for each CH depends on the CH area, the distance between the CH centroid and the eruption region, and the average magnetic field within the CH at the photospheric level. The CHIP direction for each CH points from the CH centroid to the eruption region. We focus on Solar Cycle 23 CMEs originating from the disk center of the Sun (central meridian distance ≤15°). We present an extensive statistical study via compiling data sets of observations of CMEs and their interplanetary counterparts; known as interplanetary CMEs (ICMEs). There are 2 subsets of ICMEs: magnetic cloud (MC) and non-magnetic cloud (non-MC) ICMEs. MCs are identified by a smooth change of the magnetic field as measured with spacecraft at 1 AU, using ACE and Wind spacecraft. It is found that the maximum phase has the largest CHIP value (2.9 G) for non-MCs. The CHIP is the largest (5.8 G) for driverless (DL) shocks, which are shocks at 1 AU with no discernible MC or non-MC. These results suggest that the behavior of non-MCs is similar to that of the DL shocks and different from that of MCs. In other words, the CHs may deflect the CMEs away from the Sun-Earth line and force them to behave like limb CMEs with DL shocks. This finding supports the idea that all CMEs may be flux ropes if viewed from an appropriate vantage point.