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Abstract. Two aspects of low-energy (∼0.5–30 MeV/nucleon) anomalous cosmic ray (ACR) phe-
nomena are unique. First, low-rigidity (. 2 GV) ACRs are less affected by particle drifts than
higher rigidity particles [1]. Second, outer-heliospheric ACRs having energies below the energy at
the peak of the modulated spectrum, but above the adiabatic range, are governed by a different limit
of the transport equation than higher-energy ACRs, namely,the convection-diffusion limit [2, 3]. It
is therefore possible to uncover features of energetic particle transport in the heliosphere that are not
readily apprehended using higher-energy ACR measurements[e.g., 4]. We study the first property,
in the context of outer-heliospheric Voyager 1 (V1), Voyager 2 (V2), and Pioneer 10 (P10) parti-
cle intensity measurements made during the 1991-1999 cosmic ray recovery phase. In particular, we
show that the effective “drift/convection pattern” of low-rigidity particles during a period of positive
heliomagnetic polarity (A > 0), such as this, is qualitatively different than the drift pattern usually
discussed. The disagreement between radial and latitudinal intensity gradients determined using the
new “quasi-local” gradient (QLG) method [5, 6] and the standard non-local gradient (NLG) method
[7] is discussed in light of models of the heliosphere showing longitudinal asymmetry [8]. Earlier
results regarding diminished high-latitude transport [9–12] suggest that the near-equatorial region
will have an enhanced role in the ACR transport. Absent this effect, the fact that the detected low
energy particles are actually cooled products of higher energy populations would lead to the ex-
pectation that the cooled particles should show residual evidence of the drift undergone before the
energy loss took place. The lack of such evidence suggests low latitudes are the more significant
region. We will discuss these topics with the primary goal ofhighlighting the unique and necessary
role low-energy ACR measurements have in studying the heliosphere.

1. DRIFT VELOCITY

Influences on the transport of charged particles in the heliosphere include convection and
energy loss due to the solar wind flow and divergence and diffusion due to particles scat-
tering off of irregularities in the magnetic field suffusingthe heliosphere. The process
most recently understood to be important is particle drift [1], a fundamental effect of
curvature and gradients in magnetic fields. Although widelystudied, observational tests
of drift-diffusion theory have concentrated on high-energy particles (> 10 MeV/nuc) and
observations close to the Sun (< 5 AU). Because much of the intuition regarding ACR
transport has been gained through the study of particles having a rigidity R > 2 GV, it
is important to highlight the unique lower-rigidity phenomena and disabuse ourselves of
notions that may be inappropriately applied at low-rigidities.

Before simplifying the equation of Jokipii et al. [Ref. 1, Eq. 6] for the drift velocityvD
in the heliosphere with a constant solar wind speed and a flat neutral current sheet—a
flat geometry is a significant approximation, more appropriate at solar minimum—we
indicate thatm, u, andq are the particle mass, speed, and charge,r, λ , andϕ are the
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FIGURE 1. Streamlines of vectorially added drift and solar wind velocities in the heliosphere for
vND
V = 0.1, 1.0, and 10., from left to right, for a constant radial solar wind speed. The Sun is at the

origin, the ordinate is the heliographicZ axis, North of the solar pole, and the abscissa is the orthogonal
dimensionX in the heliographic equatorial plane, with a 100 AU scale. The vertical dotted line describes
a cylinder coaxial with the solar rotation axis that defines the inner boundary of the region of applicability
for the “outer heliospheric” approximation; i.e.,X = rcosλ � 1 AU. At low rigidities (see Table 1), (a)
the drift speed is negligable and the solar wind dominates, while at higher rigidities, (c) the drifts are
dominant and the familiarA > 0 drift pattern can be seen.

heliographic radius, latitude, and longitude (“hats” designate unit vectors),Ω andV
are the solar rotation rate and solar wind speed, andA and c are a constant (defined
below) and the speed of light, respectively. We useR = muc/q and make the simplifying
assumption,rΩ

V cosλ � 1, which can be writtenr cosλ � V
Ω ≈ 1AU≡ ro, for a nominal

solar rotation rate and solar wind speed of 14×2π/year and 85 AU/year (400 km/s),
respectively. This describes the large region outside of a small cylindrical volume (with
a radius of, say,∼ 5 AU) coaxial with the Sun’s spin axis; i.e., everywhere except the
inner heliosphere and the extreme polar regions (Figure 1).The magnetic field is given
by B = A

(

r̂/r2− ϕ̂Ωcosλ/Vr
)

[1], which in the outer heliospheric approximation
provides a relationshipB = AΩcosλ/Vr betweenA and the field strengthB. Hence,
an approximate form for the drift velocity (forλ 6= 0 andA > 0) is,

vD ≈
2
3

u
ρ
r

[

−
V 2

r2Ω2

sinλ
cos3λ

r̂− λ̂ +
V
rΩ

sinλ
cos2 λ

ϕ̂
]

≡− vDr r̂− vDλ λ̂ + vDϕ ϕ̂, (1)

whereρ = R/B is the particle gyroradius (ρ = R/Bc in SI units). The magnitudevND of
the outer heliospheric drift speed along a flat current sheet(for λ = 0, wherevD ≈ vNDr̂)
provides a convenient scale with which to write the components of the drift velocity:

vDr = vND
r2

o

r2

sinλ
cos3 λ

, vDλ = vND, vDϕ = vND
ro

r
sinλ

cos2λ
, and vND ≡

2
3

u
ρ
r
.

Equation (1) is used to calculate the direction of the vectorsum of the drift and con-
vection velocities at points in theXZ-plane, forvND/V = 0.1, 1.0, and 10.0 (Figure 1).
Now, we can easily compare the drift scalevND to the solar wind speed for various
ACRs to estimate where drifts are significant contributors to their transport. A con-
venient form for the gyroradius isρ = 2

910−4AU(R/MV)/(B/nT) and we can write

Investigating the Heliosphere with Low-energy Anomalous Cosmic Rays March 24, 2004 2



TABLE 1. Drift speeds and intensity gradients of anomalous cosmic rays.

Ion∗
E†

(MeV/nuc)

R
(MV)

vND
(km/s)

vND
V

∗∗ ref.‡
gr

(%/AU)

gλ
(%/◦)

αr
§ αλ

¶

H 24-30 224 108 0.27 [5] 16±3 −10±2 – –
H 30-56 277 164 0.41 [7] 3.0±0.2 0.6±0.2 1.66±0.05 1.62±0.04
He 3-12 424 96 0.24 [5] 13.3±1.6 −7.5±1.6 – –
He 6-10 482 124 0.31 [7] 3.7±0.3 1.9±0.3 1.54±0.04 1.55±0.04
He 21-30 868 400 1.00 [5] 8.1±1.3 −3.9±1.6 – –
He 30-56 1109 656 1.64 [7] 1.7±0.3 1.1±0.2 1.63±0.04 1.59±0.07
O 7-28 2592 896 2.24 [5] 0.9±0.9 2.8±0.8 – –
O 8-18 2400 768 1.92 [7] 1.9±0.6 0.2±0.6 – –

∗ assumed to be singly ionized
† kinetic energy per nucleon
∗∗ for nominal solar wind speedV = 85 AU/yr = 400 km/s
‡ reference for gradient measurement: V1-V2-P10, 1996, NLG [7]; V1-V2, 1994-1999, QLG [5, 6]
§ tailward scaling factor for radial gradient (this work, seeSection 2)
¶ tailward scaling factor for latitudinal gradient (this work, see Section 2)

the magnetic field strength asB = (2.2nTcosλ )/(r/ro), based on the measurement at
Voyager 1 in 1996 of a 0.03 nT field at 62 AU and 33◦ [13]. In combination we get
the drift scale in terms of total kinetic energyT and charge (q = ze; z 6= atomic no.),
vND = z−1(0.85AU/yr)(T /MeV) = z−1(4 km/s)(T /MeV), which is applied in Table
1 to compare the drift and solar wind speeds for ACRs of various rigidities.

2. INTENSITY GRADIENTS

There is observational evidence that transport of low-rigidity (R . 2 MV) ACRs is
not significantly influenced by drift effects. Latitudinal intensity gradientsgλ were
determined using a “quasi-local” gradient (QLG) method [5,6, 14] and it was found
that the gradients were negative for ions—measured at V1 & V2from 1994 to 1999—
with rigidities below∼ 2 GV. This finding was unexpected, since during the prevailing
heliospheric polarity at the time (A > 0), the expectation was that latitudinal intensity
gradients would be positive. The expectation was confirmed for higher-energy ACRs
[e.g., Ref. 7] althought the magnitudes of the gradients were smaller than the prediction
of the original drift-diffusion transport theory [15, and references therein] before later
theoretical developments [9] and results from the Ulysses mission out of the ecliptic
plane [10–12] modified this expectation. This change is primarily due to turbulent, non-
Archimedean fields impeding the sunward, radial diffusion and drift of cosmic rays
above the solar poles [9, 11]. From section 1 and Table 1 it canbe seen that the negative
latitudinal gradients occur forvND .V . In addition to the non-Archimedean field effects
a possible explanation for the negative latitudinal gradients is the influence of high speed
solar wind at high latitudes, which would act to reduce inward transport of ACRs at high
latitudes.

Table 1 shows that at higher rigidities (R > 2 GV) there is substantial agreement
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between the results of the QLG and non-local gradient (NLG) methods [see Ref. 5, for an
extensive table]. However below 2 GV there is a large disagreement between the results
of these methods, e.g., NLG has positive and QLG negative latitudinal gradients. The
NLG method is the traditional three-spacecraft method usedto algebraically determine
two simultaneous intensity gradients from three separate intensity observations. Both
methods start with the relationd j = (∂ j/∂ r)dr + (∂ j/∂λ )dλ for the differential of
intensity j as a function ofr andλ . The NLG method uses the integration of this relation
between three positions to get a system of equations,

ln( j1/ j2) = gr(r1− r2)+gλ (λ1−λ2)
ln( j2/ j◦) = gr(r2− r◦)+gλ (λ2−λ◦),

(2)

which is solved forgr ≡
∂ ln j

∂ r andgλ ≡
∂ ln j
∂λ . The QLG method begins with the same

equation ford j to get ymn = gr + xmngλ , with ymn ≡ ln( jm/ jn)/(rm − rn) and xmn ≡
(λm − λ2)(rm − rn). The set of data-points (xmn,ymn) is determined empirically for all
unique pairsmn of observations during a specified time period, a linear fit towhich
determinesgr and gλ . The temporal resolution of the NLG method is limited only
by the data cadence, but NLG is restricted in spatial resolution by the non-locality of
the simultaneous spatially separated observations. The spatial resolution of the QLG
method isquasi-local since the separation between observation points (e.g., along a
single spacecraft trajectory) is specified by the data cadence, but QLG is restricted
in temporal resolution, requiring a period long enough to provide a sufficient number
of (xmn,ymn) data points to which a fit can be made. Since the QLG method canuse
fewer spacecraft, the spatial assumptions required are less extensive than with the NLG
method. In this case the QLG values are determined from measurements from V1 and
V2, which are both roughly in the apex direction (the direction of relative motion of the
heliosphere with respect to the local interstellar medium), minimizing the possibility of
effects due to longitudinal asymmetry. In addition to thesespacecraft, however, the NLG
method require the use of P10, which is positioned near the equatorial plane, but in the
anti-apex or tailward direction. This means that these NLG values are more sensitive
to longitudinal asymmetry than are the QLG values. (Analogously, the QLG method is
more sensitive to temporal assumptions.) The details of thesimilarities and differences
of these two methods, including a complete description of the QLG procedure, appear
elsewhere [5, 6, 14], but here the issue of longitudinal asymmetry is addressed.

Global models of the heliosphere [8] suggest that the distance between the Sun
and ACR source at the termination shock (TS)[16] in the anti-apex direction may
be larger than this distance in the apex direction, perhaps by a factor of∼2. Since
P10 is conveniently located very near the equator, in the anti-apex direction, a simple
calculation determines the effect on gradients of a heliosphere stretched in the tailward
direction. The set of equations (2) is modified by replacing the P10 radiusr◦ with the
effective radius for P10 under the condition of the assumed tailward scaling of the
heliospere by a factorα, i.e., r◦ → r′◦ = r◦/α. Figure 2 shows the change in the radial
and latitudinal gradient asα varies from zero to two for the example of∼7 MeV/nuc
He. The NLG values—which were calculated under the assumption of longitudinal
symmetry—are indicated in each panel of Figure 2 where the modified gradient curve
crossesα = 1. The value ofα coinciding with the QLG value associated with this energy
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FIGURE 2. Example of the effect on V1-V2-P10 ACR intensity gradients of scaling the heliosphere in
the tailward direction for∼7 MeV/nuc He. Radial (a) and latitudinal (b) intensity gradients are plotted
versus a scaling factorα which specifies the asymmetry in the heliospheric length scale (∼Sun-TS
distance) as an anti-apex to apex ratio (see Section 2). In each panel the horizontal dashed line indicates the
gradient value determined with the 3-spacecraft, non-local gradient method with longitudinal symmetry
assumed [7] and the horizontal dash-dot line indicates the gradient value determined with the 2-spacecraft,
quasi-local gradient method [5, 6]. The solid curve shows the modification in the gradient as a function
of the tailward scaling factor. The vertical dotted line indicates the magnitude of the tailward “stretching”
required to bring the NLG value into agreement with the QLG value. As indicated in Table 1 all six
low-rigidity gradients are independently brought into agreement with a∼60% asymmetry.

range is indicated in each panel. The six resulting scale factors calculated for theR < 2
GV gradients are listed in Table 1 and are all in agreement, indicating a scaling factor
α ≈ 1.6. The fact that this calculation yields consistent scale factors is suggestive that
this value may have a direct physical significance and we notethat a 60% extension in
the tailward direction appears to be well within the range ofheliospheric models [e.g.,
8]. The simplicity of this estimate, however, should warn against over-interpretation of
the result; it is clear that a more sophisticated examination of this issue is desirable.

3. DISCUSSION

The fact that a scaling in the equatorial region has brought the NLG values into agree-
ment with the QLG values has implications involving the pattern of the drift velocity
and the inhibition of ACR transport at higher latitudes. This is consistent with the in-
terpretation that lower-latitude transport is more important duringA > 0, as discussed
by Van Allen [15]. Moreover it supports the conception indicated by the negative lati-
tudinal gradient measurements that drifts are not significant for ACRs having rigidities
below∼2 GV. If it were the case that drifts were dominant at these lowrigidities then
the primary direction of transport would be from over the poles toward the equatorial
regions as shown in Figure 1c. If this were so, then it would not be expected that a scal-
ing in the equatorial plane, such as that in Section 2, would have a significant effect on
the gradient measurements. Another issue is the expectation that the low-energy parti-
cles detected are expected to have begun their transport at higher energies and then to
have cooled during the process of transport. If there were a significant population of
higher energy ACRs strongly drifting down from high latitudes, the expectation is that

Investigating the Heliosphere with Low-energy Anomalous Cosmic Rays March 24, 2004 5



the influence of this drift on these particles (detected after having undergone significant
energy loss) would be in evidence. That the gradient measurements show no evidence of
significant drift forR . 2 GV particles (i.e., convection is more important) suggests that
this more energetic population is not predominantly drifting in this way (the necessary
quantitative analysis of this conjecture has yet to be performed). This is reasonable if the
high-latitude inhibition is a strong effect, limiting the access of a high latitude source of
ACRs. This suggests the interpretation in which the high latitudes play a small role,
leaving the low-latitude region as the primary transport region. Therefore the transport
of ACRs at these latitudes will be largely radial since the most important source is not at
high latitudes. This would also explain why spherically symmetric numerical modeling
of the transport of ACRs during thisA > 0 period are surprisingly successful in matching
the observed modulated spectra throughout the heliosphere[5, 17].

In summary, we emphasized that the well-knownA > 0 drift pattern (i.e., Figure 1c)
does not apply forR . 2 GV. We discussed the non-local and quasi-local intensity
gradient methods, which disagree at low-rigidities, and undertook a simple model to
address a possible apex-to-tail asymmetry in the heliosphere. A heliosphere stretched
in the tailward direction by 60% brings all six NLG values into agreement with the
QLG values (Table 1). In addition, a consistent interpretation of outer heliospheric
ACR transport during the 1991-1999A > 0 period emerges in which (1) high-latitude
transport is suppressed; (2) drifts are weak at all rigidities and negligible forR . 2
GV; (3) low-rigidity ACRs transport in a nearly radial (drift-free) manner; (4) negative
latitudinal gradients at low-rigidity may be caused by high-latitude, high-speed wind or
the inhibited transport due to polar magnetic field effects;and (5) high-rigidty ACRs do
originate and drift down from somewhat higher latitudes.

The author thanks the conference organizers and NASA for support of this work.
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